
verified by model tests of both advanced and baseline designs for the UH-1, AH-64, 

and UH-60 helicopters (refs. 1 9 - 2 2 ) .  A more sophisticated hover analysis which 

includes wake effects may be used in the future if the trends predicted by such an 

analysis are verified for a wide range of configurations, i.e., different taper ~ 

3 c q p y  p 
ratios, taper initiation points, twist distributions, etc. 
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Design Considerations 

The rotor dynamic design considerations are essentially limitations on the 

vibratory response of the blades which in turn limit the dynamic excitation of the 

fuselage by forces and moments transmitted to the hub. The following quantities 

associated with the blade response are subject to design constraints: blade fre- 

quencies, vertical and inplane hub shear, rolling and pitching moments, and aero- 

elastic stability margin. 

Frequencies.- The blade natural frequencies are required to be separated from 

multiples of the rotor speed. A typical constraint is written as 

where wi is a blade frequency, and wLi, wui are lower and upper bounds of the ith 

frequency. Generally, wLi and wui are n n + 6 where n is an integer, n is 

the rotor speed, and 6 is a tolerance usually about 10 percent of nL3 (e.g., 

ref. 6 ) .  

Vertical hub shear.- The transmitted vertical hub shear S is to be made as 

small as possible. 

function wherein it is minimized (ref. 6 ) ,  or as a constraint where the vertical hub 

This requirement may be handled either as part of the objective 

shear is required t o  be less 

approach, letting N denote 

than some specif ied value ( r e f .  2 3 ) .  In  the f i r s t  

the number of blades in the rotor 
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IS,l + min k = N ,  2 N ,  . . .  

In  the second approach 

lskl 5 6 k = N ,  2N, . . .  

where E i s  a pos i t ive  value.  

Only blade shear responses a t  multiples o f  Nn contr ibute  t o  the transmitted 

v e r t i c a l  hub shear.  The v e r t i c a l  blade shear a t  a l l  other  frequencies cancel out i n  

the summation process. In  other words 

k = N ,  2N, . . .  

A l l  other k 
( 1 3 )  

'k I t o t  = C"Ik 
A t  the same time, f o r  a f i n i t e  hinge o f f s e t ,  the blade v e r t i c a l  shear a t  other  f r e -  

quencies contr ibutes  t o  the transmitted hub moments. 

Hub moments. - Two types of moments a re  generated a t  the hub due t o  blade motion. 

The f i rs t  is due t o  d i s t r ibu ted  blade bending moments and the second i s  due t o  

couples involving the blade shear forces a t  the hinge o f f s e t  of the blade.  Each type 

of moment has both a ro l l i ng  and pitching component a t  the hub. 

Inplane hub shear . -  In  the approaches described herein,  the inplane hub shear i s  

handled i n  the same way as  the v e r t i c a l  hub shear.  Spec i f ica l ly ,  i n  the f i rs t  

approach, 

lHkl -+ min k - N ,  2N, . . .  . ( 1 4 )  

i n  t he  second approach 

k = N ,  2 N ,  . . .  (15)  lHkl E 

For an N-bladed r o t o r ,  the t o t a l  transmitted shear a t  the hub is  non-zero only a t  

frequencies which are  multiples of Nn. However, i n  t h i s  case,  the transmitted hub 

shear is  made up of contributions from the blade responses a t  the following multiples 

of the r o t o r  speed: N ? 1, 2 N  ? 1, . . .  For example, i n  a four-bladed r o t o r ,  

14 



X4 - (2F5 - 2F3) 

Y4 (2F5 - 2F3) 

where X4 and Y4 are o 

sin 4nt 1 
thogonal compon nts of in-plan forces. F3 nd F5 are 

amplitudes of tangential forces at the blade root at frequencies 311 and 50, 

respectively. Thus X4 and Y4 play the roles of Hk in equations (14)  and (15). 

Rotor aeroelastic and aeromechanical stability.- The constraint for positive 

system aeromechanical stability relies on knowledge of fixed system characteristics 

and rotor frequency placement. Specifically, the rotor's lower modes, especially 

lead-lag, should not have fixed-system values which coalesce with the fuselage roll 

or pitch degrees of freedom, either on the ground or in flight. 

Additionally, aeroelastic stability constraints for the isolated rotor in hover 

as developed by Friedmann (ref. 6 )  require that 

where Vk is the real part of the kth complex eigenvalue and VLk is its limiting 

value. 

Analysis Considerations 

For the purpose of dynamic response analyses, the rotor blade is modeled as a 

beam undergoing coupled flap-lag-torsion motion in response to harmonically varying 

airloads. The beam is assumed to rotate at constant rotor speed which gives rise to 

centrifugal loading and stiffness effects. It is anticipated that either a finite- 

element analysis (e.g., ref. 24)  or CAMRAD (ref. 14) will be used for the dynamic 

calculations. These calculations include mode shapes and (complex) eigenvalues, 

steady-state response (displacements), blade loads, and transmitted hub loads and 

moments. 
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The governing matrix equation for vibration response of a finite-element modeled 

structure is 

@ + C i + K X - F  

where M is the mass matrix 

C is the damping matrix 

K is the stiffness matrix 

X is the vector of displacements and rotations 

F is the applied force vector 

The stiffness matrix K for a rotor blade has the form 

where KE is the linear elastic stiffness matrix 

KC 

KD 

is a centrifugal stiffness matrix 

is the differential stiffness matrix and contains stresses associated 

with centrifugal forces 

Detailed discussions and explicit forms for KC and KD are available in 

reference 2 4 .  

Equation (18) may be solved by modal superposition. The modal analysis produces 

the natural frequencies and damping needed in the phase 1 constraints (eqs. 13, 12, 

15j. Additional analyses are used to calculate the blade loads and transmitted 

hrib l o a d s  based on modal expansions o f  t h e  blade response and are outlined in 

reference 2 3 .  

Derivatives of the dynamic response quantities which appear in the constraints 

are needed. Expressions for most of these derivatives are given in reference 2 3 .  

For example, analytical derivatives of the frequencies are given by 

16 



The alternative to finite-element analysis is the modified Galerkin approach in 

CAMRAD. The advantage of the latter approach is that it resides in the same code 

that will be used for the aerodynamic analysis. The disadvantage is that the method 

does not ordinarily generate the matrices M, C, and K which are needed for the 

analytical derivatives (e.g., eq. (19)). Thus, the modified Galerkin approach may 

require the use of finite difference derivatives. This was done in reference 7 

without any ill effects. Nevertheless, studies are underway to find ways to generate 

equivalent M, C, and K matrices based on the modified Galerkin method and use 

these in the calculations of analytical derivatives. 67{'/X1/$ PG , 
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In this section the structural design of rotor blades is discussed. The various 

topics associated with the structural design include constraints, load cases, and 

analyses. 

Design Constraints 

The constraints associated with traditional structural design can be categorized 

as aerodynamic, autorotation, buckling, frequency, and material strength. As dis- 

cussed in reference 10, some of these constraints are based on maintaining character- 

istics required by other disciplines involved in the integrated optimization. Con- 

straints associated with aerodynamics, autorotation and frequency are not addressed 

in this section, since they are addressed in other sections of the paper 

Of the remaining structural constraints, the most important is the material 

strength constraint. All stresses in the blade structure must be less than the 

design allowable stress of the material for all load cases. To account for stress 

interactions, a failure criterion such as Tsai-Hill (ref. 25)  is calculated based on 

the material limit allowable stresses. The governing equation is 
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